Андрей Смирнов
Время чтения: ~21 мин.
Просмотров: 1

Волоконно-оптическая линия передачи

Применение

Волоконно-оптическая связь

Основная статья: Волоконно-оптическая связь

Волоконно-оптический кабель

Основное применение оптические волокна находят в качестве среды для передачи информации в волоконно-оптических телекоммуникационных сетях различных уровней: от межконтинентальных магистралей до домашних компьютерных сетей. Применение оптических волокон для линий связи обусловлено тем, что оптическое волокно обеспечивает высокую защищённость от несанкционированного доступа, низкое затухание сигнала при передаче информации на большие расстояния, возможность оперировать с чрезвычайно высокими скоростями передачи и пропускной способностью даже при том, что скорость распространения сигнала в волокнах может быть до 30 % ниже, чем в медных проводах и до 40 % ниже скорости распространения радиоволн. Уже к 2006 году была достигнута частота модуляции 111 ГГц, в то время как скорости 10 и 40 Гбит/с стали уже стандартными скоростями передачи по одному каналу оптического волокна. При этом каждое волокно, используя технологию спектрального уплотнения каналов может передавать до нескольких сотен каналов одновременно, обеспечивая общую скорость передачи информации, исчисляемую терабитами в секунду. Так, к 2008 году была достигнута скорость 10,72 Тбит/с, а к 2012 — 20 Тбит/с. Последний рекорд скорости — 255 Тбит/с.

С 2017 года специалисты говорят о достижении практического предела существующих технологий оптоволоконных линий связи и о необходимости кардинальных изменений в отрасли.

Волоконно-оптический датчик

Оптическое волокно может быть использовано как датчик для измерения напряжения, температуры, давления и других параметров. Малый размер и фактическое отсутствие необходимости в электрической энергии дают волоконно-оптическим датчикам преимущество перед традиционными электрическими в определённых областях.

Оптическое волокно используется в гидрофонах в сейсмических или гидролокационных приборах. Созданы системы с гидрофонами, в которых на волоконный кабель приходится более 100 датчиков. Системы с гидрофоновым датчиком используются в нефтедобывающей промышленности, а также флотом некоторых стран. Немецкая компания Sennheiser разработала лазерный микрофон, основными элементами которого являются лазерный излучатель, отражающая мембрана и оптическое волокно.

Волоконно-оптические датчики, измеряющие температуры и давления, разработаны для измерений в нефтяных скважинах. Они хорошо подходят для такой среды, работая при температурах, слишком высоких для полупроводниковых датчиков.

С использованием полимерных оптических волокон создаются новые химические датчики (сенсоры), которые нашли широкое применение в экологии, например, для детектирования аммония в водных средах.

Разработаны устройства дуговой защиты с волоконно-оптическими датчиками, основными преимуществами которых перед традиционными устройствами дуговой защиты являются: высокое быстродействие, нечувствительность к электромагнитным помехам, гибкость и лёгкость монтажа, диэлектрические свойства.

Оптическое волокно применяется в лазерном гироскопе, используемом в Boeing 767[источник не указан 2598 дней] и в некоторых моделях машин (для навигации). Волоконно-оптические гироскопы применяются в космических кораблях «Союз». Специальные оптические волокна используются в интерферометрических датчиках магнитного поля и электрического тока. Это волокна, полученные при вращении заготовки с сильным встроенным двойным лучепреломлением.

Другие применения

Диск фрисби, освещённый оптическим волокном

Оптические волокна широко используются для освещения. Они используются как световоды в медицинских и других целях, где яркий свет необходимо доставить в труднодоступную зону. В некоторых зданиях оптические волокна направляют солнечный свет с крыши в какую-нибудь часть здания. Также в автомобильной светотехнике (индикация на приборной панели).

Волоконно-оптическое освещение также используется в декоративных целях, включая коммерческую рекламу, искусство и искусственные рождественские ёлки.

Оптическое волокно также используется для формирования изображения. Пучок света, передаваемый оптическим волокном, иногда используется совместно с линзами — например, в эндоскопе, который используется для просмотра объектов через маленькое отверстие.

Оптическое волокно используется при конструировании волоконного лазера.

История[править]

В 1966 Чарльз К. Као и Джордж Хокхам предложили оптические волокна в Лаборатории STC (STL), Harlow, они показали, что потери 1000 дБ/км в существующем стекле (по сравнению с 5-10 дБ/км в коаксиальном кабеле) происходят из-за примесей, которые потенциально могут быть удалены.

Оптическое волокно было описано в 1970, в работе «Грануло-стеклянные работы», где сообщалось о получении волокна с низким ослаблением сигнала для использования в средствах связи (20dB/km) и в то же самое время были получены первые полупроводниковые лазеры на основе Арсенида Галия GaAs. Они были экономичными и компактными, и поэтому идеально подходили для использования в качестве передатчиков используемых для формирования оптических сигналов, для дальнейшей передачи по волоконно-оптическим кабелям на длинные расстояния.

После периода исследования, начинающегося с 1975, была создана первая коммерческая оптико-волоконная система связи, которая работала на длинах волн приблизительно 0.8 мкм и использовала полупроводниковые лазеры на основе Арсенида Галия GaAs. Эта система первого поколения работала с небольшой скоростью передачи сигнала 45 Mbps с интервалом между ретрансляторами до 10 км. Вскоре, 22 апреля 1977, было передано первое живое видео по телефонным коммуникациям, через оптическое волокно со скоростью в 6 Mbps в Лонг-Бич, Калифорнии.

Второе поколение оптическо-волоконной связи получило развитие для коммерческого использования в начале 1980-ых. Это оборудование уже работало с длинами волн в 1,3 мкм, и использовало лазеры на основе сложных четверных полупроводниковых систем InGaAsP. Хотя это оборудование и было первоначально ограничено дисперсией сигнала в волокне, в 1981 был найден способ для значительного улучшения работы этого оборудования. К 1987, было создано оборудование позволяющее передавать информацию на скоростях до 1.7 Gb/s с расстоянием между ретрансляторами до 50 км.

Первый трансатлантический телефонный кабель, использующий оптическое волокно, основанный на TAT-8. Дезервайр, оптимизировал лазерную технологию усиления сигнала. Эта линия вошла в эксплуатацию в 1988.

Оптические волоконно-оптические системы третьего поколения использующие в работе длину волны 1.55 мкм, имели потери приблизительно 0.2 дВ/км. Они достигли этого несмотря на большие трудности связанные с распространением импульса на этой длине волны, при использовании обычных лазеров на основе полупроводниковой системы InGaAsP. Ученые преодолели эту трудность при использовании волокон со смещённой дисперсией, разработанных так, чтобы иметь минимальную дисперсию в области спектра 1.55 мкм. ограничивая спектр пропускания единственной полосой. Эти достижения в конечном счете позволили системам третьего поколения работать коммерчески со скоростями 2.5 Gbit/s с расстояниями между ретрансляторами свыше 100 км.

Четвертое поколение оптических волоконных систем коммуникации, использовало оптическое усиление сигнала для уменьшения потребности в промежуточных ретрансляторах и использовало мультиплексирование (разделение) на разные длины волн, чтобы увеличить скорость передачи данных. Эти два усовершенствования вызвали революцию, которая привела к удвоению производительности системы каждые 6 месяцев, начинающейся в 1992 г. Это продолжалось до тех пор, пока не было достигнута производительность более 10 Tb/s к 2001 г. Недавно, скорости передачи дошла до 14 Tbit/s, которые были достигнуты по единственной 160-километровой линии, с использованием оптических усилителей.

Основа для развития пятого поколения оптических волоконных коммуникаций, состоит в расширении диапазона длин волн, на которых может работать система WDM. Обычное окно пропускания кварца, известное как полоса C, покрывает только диапазон длин волн 1.53-1.57 мкм, новое широкополосное волокно (без т. н. водяного пика поглощения) имеет более широкое окно прозрачности, обещающее расширение диапазона вплоть до 1.30-1.65 мкм.

1.3. Производство оптических кабелей в России и за рубежом

Рисунок 1.3 – Динамика роста продаж волоконно-оптических кабелей (тыс.км)

Анализируя состояние и развитие телекоммуникаций в мире, можно отметить устойчивый рост объемов прокладки волоконно-оптического кабеля (ВОК) в мире, ввод в эксплуатацию новых и усовершенствование существующих волоконно-оптических систем и, как следствие, рост объемов производства и продаж ВОК.

Динамика роста продаж ВОК представлена на рисунке 1.3.

Доля различных типов ВОК в мировой торговле приведена на рисунке 1.4.

Рисунок 1.4 – Доля различных типов ВОК в мировой торговле

В таблице 1.1 представлены данные по фактическому производству оптических волокон в России.

Таблица 1.1 – Объемы производства оптических волокон в России

Год 1996 1997 1998 1999 2000 2001

Объем выпуска, тыс.км

80 140 200 360 430 450

Стабильный рост производства оптических кабелей в России, при общем спаде производства кабелей связи, подтверждает мировые тенденции. Однако общий объем российского производства и рынка ничтожно мал в сравнении с мировыми показателями. В таблице 1.2 представлены объемы импорта оптических кабелей в России в тыс. долларов США.

Таблица 1.2 – Объемы импорта оптических кабелей в Россию

Год

1997

1998

1999

Объем импорта в тыс. $

50097

65580

24400

Несмотря на решение «Ростелекома» использовать для прокладки только отечественные оптические кабели, другие потребители – «Газтелеком», РАО ЕЭС предпочитают использовать импортные оптические кабели.

По прогнозам ВНИИКП предполагается, что с 2004 года потребление волоконно-оптических кабелей должно быть не менее 1400 тыс. км./год в одноволоконном исчислении.

В таблице П.1 Приложения 1 приведены основные российские производители оптических кабелей, обеспечивающие до 80% выпуска.

1.2. Структура волоконно-оптической системы передачи

По существу, ВОСП содержат функциональные узлы, присущие любым радиотехническим системам связи. Более того, при формировании сигналов, в принципе, возможно использование тех же разнообразных способов кодирования и видов модуляции, которые известны в радиотехническом диапазоне. Однако ряд особенностей оптического диапазона и используемого в нем элементного базиса накладывают свои ограничения на реализационные возможности ВОСП или приводят к техническим решениям, отличным от традиционных в технике связи.

Волоконно-оптической системой передачи называется совокупность активных и пассивных устройств, предназначаемых для передачи информации на расстояние по оптическим волокнам (ОВ) с помощью оптических волн и сигналов. Другими словами, ВОСП – это совокупность оптических устройств и оптических линий передачи для создания, обработки и передачи оптических сигналов. При этом оптическим сигналом служит модулированное оптическое излучение лазера или светодиода.

Рисунок 1.2 – Структурная схема волоконно-оптической системы передач

На рисунке 1.2 представлены основные компоненты такой системы.

Передатчик преобразует электрические сигналы в световые. Данное преобразование выполняет источник, представляющий собой либо светоизлучающий, либо лазерный диод. Электронная схема управления преобразует входной сигнал в сигнал определенной формы, необходимой для управления источником.

Волоконно-оптический кабель – среда, по которой распространяется световой сигнал. Кабель состоит из  оптического волокна и защитных оболочек.

Приемник предназначен для приема светового сигнала и его обратного преобразования в электрические сигналы. Его основными частями являются оптический детектор, непосредственно выполняющий функцию преобразования сигнала.

Соединители (коннекторы) предназначены для подключения волокна к источнику, оптическому детектору и для соединения волокон между собой.

В настоящее время при организации связи по волоконно-оптическим линиям связи  предпочтение отдается цифровым системам передачи (ЦСП) с импульсно-кодовой модуляцией (ИКМ), что обусловлено помимо общих преимуществ ЦСП по сравнению с аналоговыми системами передачи (АСП) особенностью работы и построения ВОСП. Это связано  с высоким уровнем шумов фотодиодов, которые используются в качестве приемников оптического излучения. Для получения необходимого качества передачи информации с помощью АСП требуются специальные методы приема и обработки аналоговых оптических сигналов. ЦСП обеспечивает требуемое качество передачи информации при отношении сигнал-помеха на 30…40 дБм меньше, чем АСП. Поэтому реализация ВОСП с использованием ЦСП намного проще по сравнению с АСП.

В ВОСП используется приграничный к инфракрасному диапазон длин волн от 800 до 1600 нм, при этом предпочтительными являются длины волн 850, 1300 и  1550 нм.

Кварцевое одномодовое волокно

В одномодовом волокне, как следует из названия, распространяется только одна (основная) мода излучения. Это достигается за счет очень маленького диаметра сердцевины (обычно 8-10 мкм). Диаметр оптической оболочки такой же, как и у многомодового волокна – 125 мкм. Отсутствие других мод положительно сказывается на характеристиках оптоволокна (нет межмодовой дисперсии), увеличивая дальность передачи без ретрансляции до сотен километров и скорость до десятков Гбит/с (приводим стандартные значения, а не те «рекордные», которые достигаются в исследовательских лабораториях). Затухание в одномодовом волокне также крайне низкое (менее 0,4 дБ/км).

Диапазон длин волн для одномодового волокна достаточно широк. Обычно передача осуществляется на длинах волн 1310 и 1550 нм. При использовании технологии спектрального уплотнения каналов используются и другие длины волн (об этом чуть ниже).

Классификация. Ассортимент кварцевых одномодовых волокон весьма разнообразен. Международный стандарт ISO/IEC 11801 и европейский EN 50173 по аналогии с многомодовым волокном выделяют два больших класса одномодовых волокон: OS1 и OS2 (OS – Optical Single-mode). Однако в связи с существующей путаницей, связанной с этим делением, не рекомендуем ориентироваться на эту классификацию. Гораздо более информативными являются рекомендации ITU-T G.652-657, выделяющие больше типов одномодовых волокон.

В таблице ниже представлена краткая характеристика этих волокон и их применение. Но прежде – пара комментариев. Межмодовая дисперсия, отсутствующая в одномодовом волокне, является не единственным механизмом уширения оптического импульса. В одномодовом волокне на первый план выходят другие механизмы, прежде всего, хроматическая дисперсия, связанная с тем, что ни один источник излучения (даже лазер) не испускает строго монохроматичное излучение. При этом существует длина волны, при которой коэффициент хроматической дисперсии равен нулю. В большинстве случае работа на этой длине волны оказывается предпочтительной, но не всегда.

Тип волокна Описание Применение
G.652. Одномодовое волокно с несмещенной дисперсией Наиболее распространенный тип одномодового волокна с точкой нулевой дисперсии на длине волны 1300 нм. Различают 4 подкласса (A, B, C и D). Волокна G.652.C и G.652.D отличаются низким затуханием вблизи «водного пика» («водным пиком» называют область большого затухания в стандартном волокне около длины волны 1383 нм). Стандартные области применения.
G.653. Одномодовое волокно с нулевой смещенной дисперсией Точка нулевой дисперсии смещена на длину волны 1550 нм. Передача на длине волны 1550 нм.
G.654. Одномодовое волокно со смещенной длиной волны отсечки Длина отсечки (минимальная длина волны, при которой волокно распространяет одну моду) смещена в область длин волн около 1550 нм. Передача на длине волны 1550 нм на очень большие расстояния. Магистральные подводные кабели.
G.655. Одномодовое волокно с ненулевой смещенной дисперсией Это волокно имеет небольшое, но не нулевое, значение дисперсии в диапазоне 1530-1565 нм (ненулевая дисперсия уменьшает нелинейные эффекты при одновременном распространении нескольких сигналов на разных длинах волн). Линии передачи со спектральным уплотнением каналов (DWDM).
G.656. Одномодовое волокно c ненулевой смещенной дисперсией для широкополосной передачи Ненулевая дисперсия в диапазоне длин волн 1460-1625 нм. Линии передачи со спектральным уплотнением каналов (CWDM/DWDM).
G.657. Одномодовое волокно, не чувствительное к потерям на макроизгибе Волокно с уменьшенным минимальным радиусом изгиба и с меньшими потерями на изгибе. Выделяют несколько подклассов. Для прокладывания в ограниченном пространстве.

Применение. Одномодовое кварцевое волокно, безусловно, является самым распространенным типом оптоволокна. С его помощью можно организовать передачу высокоскоростного сигнала на очень большие расстояния, а применение технологии спектрального уплотнения каналов (CWDM/DWDM) позволяет в разы увеличить пропускную способность линии связи. Одномодовое волокно часто применяется и на коротких дистанциях, например, в локальных сетях.

Диапазоны волн передачи сигналов[править]

Каждый из факторов, который вносит свой вклад в ослабление передачи сигнала оптическим волокном и дисперсию, зависит от длины волны излучения используемого для передачи сигналов, однако существуют участки длин волн, где эти эффекты проявляются слабее, делая эти полосы или окна самыми благоприятными для передачи. Эти окна «прозрачности» были стандартизированы, и их обозначают следующим образом:

Полоса Описание Длины волн
О полоса стандартная 1260 to 1360 нм
E полоса расширенная 1360 to 1460 нм
S полоса коротковолновая 1460 to 1530 нм
C полоса («окно эрбия») 1530 to 1565 нм
L полоса длиноволнновая 1565 to 1625 нм
U полоса ультрадлинноволновая 1625 to 1675 нм

Это разделение по длинам волн показывает, что существующая технология позволила объединить второе и третье окна прозрачности кварца в одно окно. Первоначально, эти окна прозрачности кварца были не пересекающимися.

Исторически, первым используемым диапазоном длин волн был диапазон от 800 нм до 900 нм; однако высокие потери в этом диапазоне ограничивали его использование тлько для связи на коротком расстоянии. Второе окно прозрачности — находится в области приблизительно 1310 нм, и имеет намного более низкие потери. Созданы волокна имеющие в этом диапазоне нулевую дисперсию. Третье окно прозрачности — находится в области 1550 нм и оно наиболее широко используется в настоящее время. Эта область имеет самые низкие потери ослабления сигнала и, следовательно, наиболее подходит для связи на большие расстояния. Тем не менее волокна в этой области имеют небольшую дисперсию и необходимо использование специальных «компенсаторов дисперсии» для компенсации вызванных ею потерь.

Разделение длины волны[править]

Разделение длины волны мультиплексированием (WDM, CWDM) — практика увеличения пропускной способности оптического волокна, добавлением новых каналов, при этом каждый новый канал работает на своей длине волны. Эту функцию выполняет мультиплексор, распределяя длины волны в передающем оборудовании и демультиплексор преобразующий сигнал каждой из длин волн в отдельности и совмещающий их в приёмном оборудовании. Используя технологию (WDM, CWDM), теперь коммерчески доступная полоса пропускания сигнала в одном волокне может быть расширена до 160 каналов. При этом возможна поддержка скоростей передачи информации на уровне нескольких терабит в секунду.

Характеристики оптических волокон

Пожалуй, не найдется специалиста-кабельщика, работающего с оптическим волокном, который не знал бы отличие многомодовых волокон от одномодовых. Мы не собираемся повторять прописные истины в данной статье. Остановимся на конкретных характеристиках оптоволокон, вызывающих, подчас, противоречивое толкование.

Оптические волокна допускают распространение сигналов передачи данных вдоль них при условии, что световой сигнал вводится в волокно под углом, обеспечивающим полное внутреннее отражение на границе раздела двух сред из двух типов стекла, имеющего различные показатели преломления. В центре сердцевины находится особо чистое стекло с показателем преломления 1.5. Диаметр сердцевины находится в пределах от 8 до 62,5 мкм. Окружающее ядро стекло, называемое оптической оболочкой, немного менее свободное от примесей, имеет показатель преломления 1.45. Общий диаметр сердцевины и оболочки находится в пределах от 125 до 440 мкм. Поверх оптической оболочки наносят полимерные покрытия, укрепляющие волокно, защитные нити и внешнюю оболочку.

При вводе оптического излучения в волокно, луч света, падающий на его торец под углом больше критического, будет распространяться вдоль границы раздела двух сред в волокне. Каждый раз, когда излучение попадает на границу между ядром и оболочкой, оно отражается обратно в волокно. Угол ввода оптического излучения в волокно определяется максимально допустимым углом ввода, называемым числовой апертурой или апертурой волокна. Если вращать этот угол вдоль оси сердцевины, формируется конус. Любой луч оптического излучения, падающий на торец волокна в пределах этого конуса, будет передан дальше по волокну.

Находясь внутри сердцевины, оптическое излучение многократно отражаетсяот границы раздела двух прозрачных сред, имеющих различные показатели преломления. Если физические размеры сердцевины оптического волокна существенные, отдельные лучи света будут введены в волокно и, в последующем, претерпевают отражение под разными углами. Поскольку ввод лучей оптической энергии в волокно был осуществлен под разными углами, то и расстояния, которые они проходят, будут также различными. В результате, они достигают приемного участка волокна в разное время. Импульсный оптический сигнал, прошедший по волокну будет расширен, по сравнению с тем, который был отправлен, следовательно, ухудшается и качество переданного по оптоволокну сигнала. Это явление получило название модовой дисперсии (DMD).

Другой эффект, который тоже вызывает ухудшение передаваемого сигнала, получил название хроматической дисперсии. Хроматическая дисперсия обусловлена тем, что световые лучи разных длин волн распространяютсявдоль оптического волокна с различной скоростью. При передаче серии световых импульсов через оптоволокно, модовая и хроматическая дисперсии, в конечном итоге, могут вызвать слияние серии в один длинный импульс, возникновению интерференции бит сигнала и потере передаваемых данных.

Еще одной типичной характеристикой оптического волокна является затухание. Стекло, используемой для изготовления сердцевины оптического волокна (ОВ), является очень чистым, но, все же, не идеально. В результате, свет может поглощаться материалом стекла в оптоволокне. Другими потерями оптического сигнала в волокне могут быть рассеяние и потери, а также затухание от плохих оптических соединений. Потери при соединении оптоволокон могут быть вызваны смещением сердцевин волокна или его торцевых поверхностей, которые не были отполированы и очищеныдолжным образом.

Сетевые протоколы для оптической передачи Ethernet

Перечислим основные протоколы передачи Ethernet по многомодовым и одномодовым оптическим волокнам.

10BASE-FL — 10 Мбит/с передача Ethernet по многомодовому оптоволокну.

100BASE-SX — 100 Мбит/с передача Ethernet по многомодовому ОВ на длине волны850-nm. Максимальное расстояние передачи до 300 м. Большие расстояния передачи возможны при использовании одномодового ОВ. Обратно совместимый с 10BASE-FL.

100BASE-FX — 100 Мбит/с передача Ethernet (Fast Ethernet) по многомодовому ОВ на длине волны 1300-nm. Максимальное расстояние передачи составляет до 400 м для полудуплексных соединений (с обнаружением коллизий) или до 2 км для полнодуплексной связи. Большие расстояния возможны с применением одномодового ОВ. Не обратно совместим с протоколом 10BASE-FL.

100BASE-BX — 100 Мбит/с передача Ethernet по одномодовому ОВ. В отличие от протокола 100BASE-FX, в котором используются два оптоволокна, 100BASE-BX работает по одному волокну с технологией WDM (Wavelength-Division Multiplexing), которая позволяет разделить длины волн сигнала на приеме и передаче. Для передачи и приема используются две длины волны из возможных: 1310 и 1550 nm или 1310 и 1490 nm. Расстояние передачи до 10, 20, или 40 км.

1000BASE-SX — 1 Гбит/с передача Ethernet (Gigabit Ethernet) по многомодовому ОВ на длине волны 850-nm и на максимальное расстояние до 550 м, в зависимости от используемого класса ОВ.

1000BASE-LX — 1 Гбит/с передача Ethernet (GigabitEthernet) по многомодовому ОВ на длине волны 1300-nm на максимальное расстояние до 550 м. Протокол оптимизирован для передачи на большие расстояния (до 10 км) по одномодовому ОВ.

1000BASE-LH— — 1 Гбит/с передача Ethernet по одномодовому ОВ на максимальное расстояние до 100 км.

10GBASE-SR — 10 Гбит/с передача Ethernet (10 GigabitEthernet) по многомодовому ОВ на длине волны over 850-nm. Расстояние передачи может быть 26 м или 82 м, в зависимости от типа применяемого ОВ с сердцевиной 50- или 62.5 мкм. Поддержка передачи на расстояние 300 м по многомодовому ОВ класса ОМ3 и выше, с коэффициентом широкополосности не менее 2000 MГц/км.

10GBASE-LX4 — 10 Гбит/с передача Ethernetпо многомодовому ОВ на длине волны 1300-nm. Использует технологию WDM для передачи на расстояния до 300 м по многомодовым волокнам. Поддержка передачи по одномодовому ОВ на расстояния до 10 км.

В заключение статьи, приведем некоторые данные по используемым типам многомодовых оптических волокон и стандартам передачи. Данные сведены в табл.1 (выдержки из Стандартов).

Международный Стандарт: ISO/IEC 11801 “GenericCablingforCustomerPremises”

МеждународныйСтандарт: IEC 60793-2-10 “Product Specifications — Sectional Specification for Category A1 Multimode Fibers”

Стандарт ANSI/TIA/EIA-492-AAAx “Detail Specification for Class 1a Graded-Index Multimode Optical Fibers”

(1) класс OM1 многомодовое ОВ с сердцевиной 62.5-мкм или 50-мкм.

(2) класс OM2 многомодовое ОВ с сердцевиной 50-мкм или 62.5-мкм.

(3) класс OM4 ратифицирован IEEE в июне 2010 и является Стандартом 802.ba для 40G/100G Ethernet. Работает на расстояниях до 1000 м по 1 Гбит/с Ethernet, 550 м по 10 Гбит/с Ethernet и 150 м по 40 ГБит/с и 100 ГБит/с сетевым протоколам Ethernet.

Составляющие элементы ВОЛС

Принято разделять оборудование ВОЛС на активные и пассивные элементы.

Упрощенная схема действия всех компонентов заключается в нахождении на одном конце кабеля светодиода или лазерного диода, который передает сигнал.

Во время передачи данных инфракрасный диод создает импульс согласно с типом сигнала. Фотокодектор на другом конце волокна принимает и преобразует световой сигнал в электрический.

К активным компонентам системы относят:

  • мультиплексор — устройство, соединяющее несколько сигналов в единственный;
  • усилитель — позволяет увеличить мощность передаваемого сигнала;
  • светодиоды и лазерные диоды — источник света в кабеле;
  • фотодиод — приниматель сигнала на конечной части волокна, осуществляет преобразование полученного сигнала;
  • модулятор — устройство преобразования сигнала из электрического в оптический.

Пассивные элементы ВОЛС:

  • оптоволоконный кабель — среда, через которую передается сигнал;
  • оптическая муфта — соединяет несколько волокон;
  • оптический кросс — устройство на конце кабеля, подключающее его к активным элементам;
  • спайки — производят сращивание волокон;
  • разъемы — приспособления для отключения или подсоединения кабеля;
  • ответвители — устройства по распределению мощности оптики из нескольких волокон в единственный;
  • коммутаторы — оборудование для перераспределения оптических сигналов.

Строительство ВОЛС

Перед началом работ, связанных со строительством ВОЛС, необходимо провести ряд предварительных работ, то есть создать проект ВОЛС.

Задачами его является определение пропускных возможностей будущих линий связи; исследование среды, через которую будет пролегать система; расчет массы, объемов и общей стоимости всей ВОЛС; создание защитной системы для линии связи; обеспечение безопасности передаваемых данных.

Проектирование и строительство ВОЛС предусматривает установку оборудования, подготовку среды для проведения кабеля, производится закупка оборудования. Организовывается получение технических условий для монтажа линий связи.

После проведения вышеперечисленных этапов по проектированию и подготовки к работам, осуществляется монтаж оборудования: прокладка кабеля в грунте, канализации, коллекторах; установка модулей, крепление муфт, установка всех активных компонентов. После установки необходимого оборудования производятся мероприятия по созданию безопасных условий для кабеля.

Готовый участок линии связи тестируют по основным свойствам.

Виды измерений

Тестирование волоконно-оптической линии связи совершается путем проведения двух видов измерений. Первый вид оценивает затухание сигнала от одного конца кабеля до другого. С одной стороны подключается лазер, с другой фотодиод. Изменение тока данных между двумя компонентами свидетельствует о потерях в волокне. Прибор, с помощью которого происходит выявление затухания сигнала, называется оптический тестер.

Второй вид измерений ВОЛС — это с помощью оптического рефлектометра. Прибор определяет месторасположение в кабеле дефектов, делает замеры потери сигнала в любой части волокна. Данные выводятся на экран в виде графиков, с помощью которых видны уровни сигнала и расстояния между разными точками всей системы.

Оптический бюджет

Оптический бюджет характеризует максимальное затухание в линии, которое возможно в линии связи. Функционирование возможно при не превышении величины бюджета. Все элементы системы разделяют на создающие в кабеле сигнал и на снижающие его, способствующие затуханию потока данных.

Элементами создающими сигнал являются трансиверы и усилители. Все остальные элементы и оборудование создают помехи и влияют на потерю сигнала.

Компании-производители систем указывают в документации расчет ВОЛС.

Произведение вычислений основывается на учете источников затухания в волокне, мультиплексоры, модули, участки соединения, наличие разветвлений. Для расчета оптического бюджета ВОЛС необходимо наличие данных о длине замеряемого участка волокна в км, количество соединение на оптических панелях, число сварочных скреплений.

Чтобы обеспечить надежность работы всей системы требуется брать во внимание возможность увеличения потерь сигнала за счет внешних факторов, независящих от самой линии, а также за счет старения оборудования

Разновидности кабелей

Кабель формируют:

  1. Ядро.
  2. Оболочка.
  3. Защитный кожух.

Волокно реализует полное отражение сигнала. Материалом первых двух компонентов традиционно выступает стекло. Иногда находят дешёвую замену – полимер. Оптические кабели объединяют сплавлением. Выравнивание ядра потребует сноровки. Мультимодовый кабель толщиной свыше 50 мкм паять проще. Две глобальные разновидности различаются количеством мод:

  • Мультимодовый снабжён толстым ядром (свыше 50 мкм).
  • Одномодовый значительно тоньше (менее 10 мкм).

Парадокс: кабель меньших размеров обеспечивает дальнюю связь. Стоимость четырёхжильного трансатлантического составляет 300 млн. долларов. Сердцевину покрывают светоустойчивым полимером. Журнал Новый учёный (2013) обнародовал опыты научной группы Университета Саутгемптона, покрывших дальность 310 метров… волноводом! Пассивный диэлектрический элемент показал скорость 77,3 Тбит/с. Стены полой трубки образованы фотонным кристаллом. Информационный поток двигался со скорость 99,7% световой.

Фотонно-кристаллический фибер

Новая разновидность кабелей образована набором трубок, конфигурация напоминает скруглённые пчелиные соты. Фотонные кристаллы, напоминают природный перламутр, образуя периодические конформации, отличающиеся коэффициентом преломления. Некоторые длины волн внутри таких трубок затухают. Кабель демонстрирует полосу пропускания, луч претерпевая брэгговскую рефракцию отражается. Благодаря наличию запрещённых зон когерентный сигнал двигается вдоль световода.

Первая конструкция Йе и Йарива (1978) представлена двумя и более концентрическими слоями разных материалов. Конструкции постоянно дополняются свежими видами. Рассел (1996, автор термина фотонно-кристаллический фибер) представил сотовый набор волокон, двумя годами позже догадались сердцевину заменить пустотой. Достигнутые затухания впечатляют:

  1. Полые – 1,2 дБ/км.
  2. Сплошные – 0,37 дБ/км.

Технология производства сродни традиционной. Сравнительно толстую заготовку постепенно вытягивают. Выходит волос длиной в километры. Материалы проходят стадию исследований.

Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации