Андрей Смирнов
Время чтения: ~17 мин.
Просмотров: 2

Icmp port knocking в openwrt

Сравнение UDP и TCP

Основная статья: Транспортный уровень

TCP — ориентированный на соединение протокол, что означает необходимость «рукопожатия» для установки соединения между двумя хостами. Как только соединение установлено, пользователи могут отправлять данные в обоих направлениях.

Надёжность — TCP управляет подтверждением, повторной передачей и тайм-аутом сообщений. Производятся многочисленные попытки доставить сообщение. Если оно потеряется на пути, сервер вновь запросит потерянную часть. В TCP нет ни пропавших данных, ни (в случае многочисленных тайм-аутов) разорванных соединений.

Упорядоченность — если два сообщения последовательно отправлены, первое сообщение достигнет приложения-получателя первым. Если участки данных прибывают в неверном порядке, TCP отправляет неупорядоченные данные в буфер до тех пор, пока все данные не могут быть упорядочены и переданы приложению.

Тяжеловесность — TCP необходимо три пакета для установки сокет-соединения перед тем, как отправить данные. TCP следит за надёжностью и перегрузками.

Потоковость — данные читаются как поток байтов, не передается никаких особых обозначений для границ сообщения или сегментов.

UDP — более простой, основанный на сообщениях протокол без установления соединения. Протоколы такого типа не устанавливают выделенного соединения между двумя хостами. Связь достигается путём передачи информации в одном направлении от источника к получателю без проверки готовности или состояния получателя. В приложениях для голосовой связи через интернет-протокол (Voice over IP, TCP/IP) UDP имеет преимущество над TCP, в котором любое «рукопожатие» помешало бы хорошей голосовой связи. В VoIP считается, что конечные пользователи в реальном времени предоставят любое необходимое подтверждение о получении сообщения.

Ненадёжный — когда сообщение посылается, неизвестно, достигнет ли оно своего назначения — оно может потеряться по пути. Нет таких понятий, как подтверждение, повторная передача, тайм-аут.

Неупорядоченность — если два сообщения отправлены одному получателю, то порядок их достижения цели не может быть предугадан.

Легковесность — никакого упорядочивания сообщений, никакого отслеживания соединений и т. д. Это небольшой транспортный уровень, разработанный на IP.

Датаграммы — пакеты посылаются по отдельности и проверяются на целостность только если они прибыли. Пакеты имеют определенные границы, которые соблюдаются после получения, то есть операция чтения на сокете-получателе выдаст сообщение таким, каким оно было изначально послано.

Нет контроля перегрузок — UDP сам по себе не избегает перегрузок. Для приложений с большой пропускной способностью возможно вызвать коллапс перегрузок, если только они не реализуют меры контроля на прикладном уровне.

Протоколы и порты

Каждому устройству или компьютеру в Интернете присвоен свой уникальный номер, известный как IP-адрес. Это для конкретного компьютера, который должен быть идентифицирован, когда вы находитесь в Интернете. Информация, передаваемая через Интернет с компьютера, теперь принимается с помощью портов. Как и TCP, UDP также имеет свои специфические функции и порты. Ниже приведены некоторые из наиболее часто используемых для UDP.

Система доменных имен (DNS RFC 1034-1035: порт 53)

Протокол DNS является одним из широко используемых протоколов как в публичных, так и в частных сетях. Его основной целью является преобразование доменных имен в IP-адреса для маршрутизации по сети.
широко используется в публичном интернете и частных сетях для преобразования доменных имен в IP-адреса, обычно для маршрутизации сети. DNS-серверы могут быть настроены внутри частной сети, не будучи частью глобальной системы.

Протокол динамической конфигурации хоста (DHCP RFC 2131: порт 67/68)

Этот протокол в основном используется в сетях, не использующих статические назначения IP-адресов. Сервер может быть настроен либо инженером, либо администратором, у которого есть доступный для назначения пул адресов.
Клиент может включить устройство и запросить IP-адрес с локального DHCP-сервера, когда есть доступный адрес, он будет назначен устройству. Однако это не является постоянным назначением и истекает через определенный промежуток времени. Срок действия договора аренды истекает, если не подается запрос на продление, и он будет возвращен в пул для передачи другим устройствам.

Тривиальный протокол передачи файлов (TFP RFC 1350: порт 69)

Этот протокол, в отличие от обычного протокола передачи файлов, используемого в TCP, предлагает метод передачи данных без создания сеанса. Использование протокола TFTP не гарантирует, что передача файлов была выполнена должным образом. Этот протокол в основном используется для обновления микропрограммного обеспечения и программного обеспечения устройств.

Простой протокол сетевого управления (SNMP RFC 1901-1908, 3411-3418: порт 161-/162)

Этот протокол используется для управления сетью. Возможность мониторинга, настройки и управления сетевыми устройствами — это некоторые из возможностей SNMP. Ловушки также настраиваются таким образом, чтобы уведомлять о необходимости принятия конкретных мер и осуществлять дальнейший поиск источника события.

Протокол сетевого времени (NTP RFC 5905: порт 123)

Основной целью NTP является синхронизация устройств в Интернете, и считается одним из наиболее игнорируемых протоколов. Для поддержания точных часов в большинстве современных операционных систем используется протокол NTP

Устройство позволяет без особых усилий устранять неполадки на разных устройствах, поскольку часы точны, что делает NTP жизненно важной частью сетевых систем

В заключение хочу сказать, что на сегодняшний день UDP выполняет свою собственную задачу вместе с различными интернет-протоколами. Он все еще используется во многих основных приложениях, которые мы используем каждый день, например, для потоковой передачи видео и видеоконференций.

Технические подробности

ICMP-сообщение строится из IP-пакетов, сгенерировавших ICMP-ответ. IP инкапсулирует соответствующее ICMP-сообщение с новым заголовком IP (чтобы отправить ICMP-сообщение обратно отправителю) и передает полученные пакеты дальше.

Например, каждая машина (такая, как маршрутизатор), которая перенаправляет IP-пакеты, уменьшает Time to live (TTL) поля заголовка IP на единицу, если TTL достигает 0, ICMP-сообщение о превышении TTL отправляется на источник пакета.

ICMP основан на протоколе IP. Каждое ICMP-сообщение инкапсулируется непосредственно в пределах одного IP-пакета, и, таким образом, как и UDP и в отличие от TCP, ICMP является т. н. «ненадежным» (не контролирующим доставку и её правильность). В отличие от UDP, где реализация надёжности возложена на ПО прикладного уровня, ICMP (в силу специфики применения) обычно не нуждается в реализации надёжной доставки. Его цели отличны от целей транспортных протоколов, таких как TCP и UDP: он, как правило, не используется для передачи и приёма данных между конечными системами. ICMP не используется непосредственно в приложениях пользователей сети (исключение составляют инструменты Ping и Traceroute). Тот же Ping, например, служит обычно как раз для проверки потерь IP-пакетов на маршруте.

Структура пакета

UDP не предоставляет никаких гарантий доставки сообщения для вышестоящего протокола и не сохраняет состояния отправленных сообщений. По этой причине UDP иногда называют Unreliable Datagram Protocol (англ. — Ненадёжный протокол датаграмм).

UDP обеспечивает многоканальную передачу (с помощью номеров портов) и проверку целостности (с помощью контрольных сумм) заголовка и существенных данных. Надёжная передача в случае необходимости должна реализовываться пользовательским приложением.

Биты 0 — 15 16-31
0-31 Порт отправителя (Source port) Порт получателя (Destination port)
32-63 Длина датаграммы (Length) Контрольная сумма (Checksum)
64-… Данные (Data)

Заголовок UDP состоит из четырёх полей, каждое по 2 байта (16 бит). Два из них необязательны к использованию в IPv4 (розовые ячейки в таблице), в то время как в IPv6 необязателен только порт отправителя.

Порт отправителя

В этом поле указывается номер порта отправителя. Предполагается, что это значение задаёт порт, на который при необходимости будет посылаться ответ. В противном же случае, значение должно быть равным 0. Если хостом-источником является клиент, то номер порта будет, скорее всего, динамическим. Если источником является сервер, то его порт будет одним из «хорошо известных».

Порт получателя

Это поле обязательно и содержит порт получателя. Аналогично порту отправителя, если хостом-получателем является клиент, то номер порта динамический, если получатель — сервер, то это будет «хорошо известный» порт.

Длина датаграммы

Поле, задающее длину всей датаграммы (заголовка и данных) в байтах. Минимальная длина равна длине заголовка — 8 байт. Теоретически, максимальный размер поля — 65535 байт для UDP-датаграммы (8 байт на заголовок и 65527 на данные). Фактический предел для длины данных при использовании IPv4 — 65507 (помимо 8 байт на UDP-заголовок требуется ещё 20 на IP-заголовок).

На практике также следует учитывать, что если длина IPv4 пакета с UDP будет превышать MTU (для Ethernet по умолчанию 1500 байт), то отправка такого пакета может вызвать его фрагментацию, что может привести к тому, что он вообще не сможет быть доставлен, если промежуточные маршрутизаторы или конечный хост не будут поддерживать фрагментированные IP пакеты. Также в RFC791 указывается минимальная длина IP пакета 576 байт, которую должны поддерживать все участники, и рекомендуется отправлять IP пакеты большего размера только в том случае если вы уверены, что принимающая сторона может принять пакеты такого размера. Следовательно, чтобы избежать фрагментации UDP пакетов (и возможной их потери), размер данных в UDP не должен превышать: MTU — (Max IP Header Size) — (UDP Header Size) = 1500 — 60 — 8 = 1432 байт. Для того чтобы быть уверенным, что пакет будет принят любым хостом, размер данных в UDP не должен превышать: (минимальная длина IP пакета) — (Max IP Header Size) — (UDP Header Size) = 576 — 60 — 8 = 508 байт.

В Jumbogram’мах IPv6 пакеты UDP могут иметь больший размер. Максимальное значение составляет 4 294 967 295 байт (232 — 1), из которых 8 байт соответствуют заголовку, а остальные 4 294 967 287 байт — данным.

Следует заметить, что большинство современных сетевых устройств отправляют и принимают пакеты IPv4 длиной до 10000 байт без их разделения на отдельные пакеты. Неофициально такие пакеты называют «Jumbo-пакетами», хотя понятие Jumbo официально относится к IPv6. Тем не менее, «Jumbo-пакеты» поддерживают не все устройства и перед организацией связи с помощью UDP/IP IPv4 посылок с длиной превышающей 1500 байт нужно проверять возможность такой связи опытным путём на конкретном оборудовании.

Контрольная сумма

Поле контрольной суммы используется для проверки заголовка и данных на ошибки. Если сумма не сгенерирована передатчиком, то поле заполняется нулями. Поле не является обязательным для IPv4.

iptables и ICMP

Правила для Правила iptables. Список возможных типов выводится по команде

# iptables -p icmp -h

Valid ICMP Types:
any
echo-reply (pong)
destination-unreachable
   network-unreachable
   host-unreachable
   protocol-unreachable
   port-unreachable
   fragmentation-needed
   source-route-failed
   network-unknown
   host-unknown
   network-prohibited
   host-prohibited
   TOS-network-unreachable
   TOS-host-unreachable
   communication-prohibited
   host-precedence-violation
   precedence-cutoff
source-quench
redirect
   network-redirect
   host-redirect
   TOS-network-redirect
   TOS-host-redirect
echo-request (ping)
router-advertisement
router-solicitation
time-exceeded (ttl-exceeded)
   ttl-zero-during-transit
   ttl-zero-during-reassembly
parameter-problem
   ip-header-bad
   required-option-missing
timestamp-request
timestamp-reply
address-mask-request
address-mask-reply

Можно указать стандартный числовой код или сообщение. Пропустить все входящие ICMP-эхо-запросы (пинги).

# iptables -I INPUT -p icmp --icmp-type 8 -j ACCEPT
# iptables -I INPUT -p icmp --icmp-type echo-request -j ACCEPT

Блокирует фрагменты ICMP-пакетов

iptables -I INPUT -p icmp -f -j DROP

Рекомендуемые правила для ICMP:

#!/bin/sh

IPT="/sbin/iptables"

$IPT -A INPUT -p icmp --icmp-type 3 -j ACCEPT # destination-unreachable 3/4
$IPT -A INPUT -p icmp --icmp-type 8 -j ACCEPT # echo request
$IPT -A INPUT -p icmp --icmp-type 12 -j ACCEPT # IP header bad 
$IPT -A OUTPUT -p icmp --icmp-type 0 -j ACCEPT #
$IPT -A OUTPUT -p icmp --icmp-type 3 -j ACCEPT #
$IPT -A OUTPUT -p icmp --icmp-type 4 -j ACCEPT #
$IPT -A OUTPUT -p icmp --icmp-type 11 -j ACCEPT #
$IPT -A OUTPUT -p icmp --icmp-type 12 -j ACCEPT #

опция –reject-with

В отличие от цели DROP, где пакет просто отбрасывается, в данном случае отправителю будет отправлено IСМР-сообщение «Port unreachable / icmp port unreachable» («Порт недоступен»). С помощью опции –reject-with можно изменить тип ICMP-сообщения:

# iptables -A INPUT -s 1.2.3.4 -j REJECT --reject-with icmp-net-unreachable

У опции –reject-with есть следующие аргументы:

icmp-net-unreachable — сеть недоступна;
icmp-host-unreachable — узел недоступен;
icmp-port-unreachable — порт недоступен;
icmp-proto-unreahable — неподдерживаемый протокол;
icmp-net-prohibited — сеть запрещена;
icmp-host-prohibited — узел запрещен.

По умолчанию будет передано сообщение port-unreachable.
Вышеперечисленные аргументы являются ICMP error messages.В дополнение к опции –reject-with TCP-пакеты можно отклонить с помощью аргумента tcp-reset, который отправляет RST-сообщения отправителю. Это наилучший с точки зрения безопасности способ, нужно обязательно использовать именно его. TCP RST пакеты используются для закрытия TCP соединений.

Что такое таблицы маршрутизации

И вот мы плавно добрались и до них. И так.. Что же за таблицы такие.

Организация или пользователь может иметь несколько точек подключения к Интернету (например, резервные каналы на случай, если у первого провайдера что-то выйдет из строя, а интернет таки очень нужен) или содержать в своей структуре несколько IP-сетей. В этом случае, чтобы система знала каким путем (через какой шлюз) посылать ту или иную информацию, используются таблицы маршрутизации. В таблицах маршрутизации для каждого шлюза указываются те подсети Интернета, для которых через них должна передаваться информация. При этом для нескольких шлюзов можно задать одинаковые диапазоны, но с разной стоимостью передачи данных: например, информация, будет пересылаться по каналу, имеющему самую низкую стоимость, а в случае выхода его из строя по тем или иным причинам, автоматически будет использоваться следующее доступное наиболее дешевое соединение.

Сравнение UDP и TCP

Основная статья: Транспортный уровень

TCP — ориентированный на соединение протокол, что означает необходимость «рукопожатия» для установки соединения между двумя хостами. Как только соединение установлено, пользователи могут отправлять данные в обоих направлениях.

Надёжность — TCP управляет подтверждением, повторной передачей и тайм-аутом сообщений. Производятся многочисленные попытки доставить сообщение. Если оно потеряется на пути, сервер вновь запросит потерянную часть. В TCP нет ни пропавших данных, ни (в случае многочисленных тайм-аутов) разорванных соединений.

Упорядоченность — если два сообщения последовательно отправлены, первое сообщение достигнет приложения-получателя первым. Если участки данных прибывают в неверном порядке, TCP отправляет неупорядоченные данные в буфер до тех пор, пока все данные не могут быть упорядочены и переданы приложению.

Тяжеловесность — TCP необходимо три пакета для установки сокет-соединения перед тем, как отправить данные. TCP следит за надёжностью и перегрузками.

Потоковость — данные читаются как поток байтов, не передается никаких особых обозначений для границ сообщения или сегментов.

UDP — более простой, основанный на сообщениях протокол без установления соединения. Протоколы такого типа не устанавливают выделенного соединения между двумя хостами. Связь достигается путём передачи информации в одном направлении от источника к получателю без проверки готовности или состояния получателя. В приложениях для голосовой связи через интернет-протокол (Voice over IP, TCP/IP) UDP имеет преимущество над TCP, в котором любое «рукопожатие» помешало бы хорошей голосовой связи. В VoIP считается, что конечные пользователи в реальном времени предоставят любое необходимое подтверждение о получении сообщения.

Ненадёжный — когда сообщение посылается, неизвестно, достигнет ли оно своего назначения — оно может потеряться по пути. Нет таких понятий, как подтверждение, повторная передача, тайм-аут.

Неупорядоченность — если два сообщения отправлены одному получателю, то порядок их достижения цели не может быть предугадан.

Легковесность — никакого упорядочивания сообщений, никакого отслеживания соединений и т. д. Это небольшой транспортный уровень, разработанный на IP.

Датаграммы — пакеты посылаются по отдельности и проверяются на целостность только если они прибыли. Пакеты имеют определенные границы, которые соблюдаются после получения, то есть операция чтения на сокете-получателе выдаст сообщение таким, каким оно было изначально послано.

Нет контроля перегрузок — UDP сам по себе не избегает перегрузок. Для приложений с большой пропускной способностью возможно вызвать коллапс перегрузок, если только они не реализуют меры контроля на прикладном уровне.

Сообщение Destination Unreacheable (адресат недостижим)

Это сообщение применяется для передачи хосту указания на то, что получатель отправленного им пакета IP не был найден. Такая проблема может быть вызвана многими причинами, о которых можно узнать по дополнительному коду в сообщении Destination Unreachable. Для этого сообщения определено шесть дополнительных кодов, описание которых приведено ниже.

  • Код Network unreachable (сеть недостижима). Этот код указывает, что от маршрутизаторов в сети поступили сообщения о том, что они не могут найти путь для передачи пакета от отправителя к получателю. Иными словами, не исключено, что сеть, в которой находится получатель, действительно существует, но маршрутизаторы не имеют информации о том, где она находится или как получить к ней доступ, поэтому они уничтожают пакет и передают отправителю такое сообщение.
  • Код Host unreachable (хост недостижим). Этот код указывает, что искомая сеть исправна и работоспособна и маршрутизатор вполне может получить к ней доступ, но хост получателя по какой-то причине не отвечает. Если же хост получателя не может обработать полученный пакет, он передает сообщение с кодом Protocol Unreachable или Port Unreachable.
  • Код Protocol unreachable (протокол недоступен). Этот код указывает, что хост получателя исправен и работоспособен, но протокол, который используется отправителем, на хосте получателя не поддерживается.
  • Код Port unreachable (порт недоступен). Согласно этому коду, требуемый протокол функционирует, но порт, который применяется для этого протокола, является недоступным. Дополнительная информация о портах приведена ниже в этой главе.
  • Код Unable to Fragment (фрагментация не может быть выполнена). С помощью этого передается информация о том, что в одном из маршрутизаторов по пути следования пакета возникла необходимость фрагментировать этот пакет, чтобы он соответствовал максимальной единице передачи данных в сети для протокола канального уровня, применяемого в текущем наборе протоколов, но такая операция не могла быть выполнена, поскольку в пакете установлен бит запрета фрагментации (Do not Fragment — DF).
  • Код Source Route Failed (маршрут, заданный отправителем, неприменим).

Этот код позволяет хосту определить, что заданный им маршрут передачи пакета получателю является недействительным. Как правило, это сообщение не применяется, поскольку в протоколе IP обычно не предусматривается маршрутизация от отправителя.
Сообщение Source Quench(подавление источника)

Сообщение Source Quench

Сообщение Source Quench протокола ICMP является типичным примером уведомления о заторе. Когда буфер устройства начинает заполняться, этим устройством может быть отправлено сообщение Source Quench ICMP на предыдущее устройство, находящееся на расстоянии одного транзитного перехода, с требованием замедлить передачу. Такой механизм напоминает схему уведомления о заторе, которая рассматривалась в главе 1. Единственным недостатком такого механизма является то, что устройства обычно начинают отправлять сообщения Source Quench только после того, как в них начинается уничтожение пакетов, полученных от предыдущего устройства. Сообщения Source Quench могут вырабатываться любыми устройствами вдоль пути следования пакета, независимо от того, являются ли эти устройства маршрутизаторами или оконечными устройствами (хостами). Кроме того, на сообщение Source Quench может также ответить любое устройство вдоль пути следования (маршрутизатор или хост), но и в этом случае перечень возможных ответов зависит от конкретной реализации протокола ICMP.

Приложения

Многочисленные ключевые Интернет-приложения используют UDP, в их числе — DNS (где запросы должны быть быстрыми и состоять только из одного запроса, за которым следует один пакет ответа), Простой Протокол Управления Сетями (SNMP), Протокол Маршрутной Информации (RIP), Протокол Динамической Конфигурации Узла (DHCP).

Голосовой и видеотрафик обычно передается с помощью UDP. Протоколы потокового видео в реальном времени и аудио разработаны для обработки случайных потерь пакетов так, что качество лишь незначительно уменьшается вместо больших задержек при повторной передаче потерянных пакетов. Поскольку и TCP, и UDP работают с одной и той же сетью, многие компании замечают, что недавнее увеличение UDP-трафика из-за этих приложений реального времени мешает производительности TCP-приложений вроде систем баз данных или бухгалтерского учёта. Так как и бизнес-приложения, и приложения в реальном времени важны для компаний, развитие качества решений проблемы некоторыми рассматривается в качестве важнейшего приоритета.

Служебные порты

Основная статья: Порт (TCP/IP)

UDP-приложения используют датаграммные сокеты для установки соединения между хостами. Приложение связывает сокет с его конечной точкой передачи данных, которая является комбинацией IP-адреса и порта службы. Порт — это программная структура, определяемая номером порта — 16-битным целочисленным значением (то есть от 0 до 65535). Порт 0 зарезервирован, хотя и является допустимым значением порта источника в случае, если процесс-отправитель не ожидает ответных сообщений.

IANA разбила номера портов на три группы.

  • Порты с номерами от 0 до 1023 используются для обычных, хорошо известных служб. В Unix-подобных операционных системах для использования таких портов необходимо разрешение суперпользователя.
  • Порты с номерами от 1024 до 49151 предназначены для зарегистрированных IANA служб.
  • Порты с 49152 по 65535 могут быть использованы для любых целей, поскольку официально не разработаны для какой-то определённой службы. Они также используются как динамические (временные) порты, которые запущенное на хосте программное обеспечение может случайным образом выбрать для самоопределения. По сути, они используются как временные порты в основном клиентами при связи с серверами.

Надёжность и решения проблемы перегрузок

Из-за недостатка надёжности приложения UDP должны быть готовы к некоторым потерям, ошибкам и дублированиям. Некоторые из них (например, TFTP) могут при необходимости добавить элементарные механизмы обеспечения надёжности на прикладном уровне.

Но чаще такие механизмы не используются UDP-приложениями и даже мешают им. Потоковые медиа, многопользовательские игры в реальном времени и VoIP — примеры приложений, часто использующих протокол UDP. В этих конкретных приложениях потеря пакетов обычно не является большой проблемой. Если приложению необходим высокий уровень надёжности, то можно использовать другой протокол (TCP) или воспользоваться методами помехоустойчивого кодирования (Erasure code<span title=»Статья «Erasure code» в русском разделе отсутствует»>ru</span>en).

Более серьёзной потенциальной проблемой является то, что в отличие от TCP, основанные на UDP приложения не обязательно имеют хорошие механизмы контроля и избегания перегрузок. Чувствительные к перегрузкам UDP-приложения, которые потребляют значительную часть доступной пропускной способности, могут поставить под угрозу стабильность в Интернете.

Сетевые механизмы были предназначены для того, чтобы свести к минимуму возможные эффекты от перегрузок при неконтролируемых, высокоскоростных нагрузках. Такие сетевые элементы, как маршрутизаторы, использующие пакетные очереди и техники сброса, часто являются единственным доступным инструментом для замедления избыточного UDP-трафика. DCCP (англ. Datagram Congestion Control Protocol — протокол контроля за перегрузками датаграмм) разработан как частичное решение этой потенциальной проблемы с помощью добавления конечному хосту механизмов для отслеживания перегрузок для высокоскоростных UDP-потоков вроде потоковых медиа.

Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации