Андрей Смирнов
Время чтения: ~18 мин.
Просмотров: 0

Зачем нужен mu-mimo в wi-fi

Примечания

  1. Флаксман А. Г. Адаптивная пространственная обработка в многоканальных информационных системах. Дис. д-ра физ.-мат. наук . — М., 2005. — С. 5.

  2. Слюсар, Вадим . Электроника: наука, технология, бизнес. – 2005. — № 8. С. 52—58. (2005).
  3. ↑ Флаксман А. Г. Адаптивная пространственная обработка в многоканальных информационных системах/ Флаксман А. Г.//Дис. Д-ра физ.-мат. наук . — М.: РГБ 2005 (Из фондов Российской Государственной библиотеки), стр. 29-30
  4. Вишневский, В. М. Широкополосные беспроводные сети передачи информации/В. М. Вишневский, А. И. Ляхов, С. Л. Портной, И. В. Шахнович. — М.: Техносфера, 2005—592 с.
  5. Слюсар, Вадим . В книге «Широкополосные беспроводные сети передачи информации». / Вишневский В. М., Ляхов А. И., Портной С. Л., Шахнович И. В. – М.: Техносфера. – 2005. C. 498–569 (2005).

  6. Li Q., Lin X. E. Closed Loop Feedback in MIMO Systems // Patent No US 7,236,748 B2 Assignee — Intel Corporation, Date of patent — June 26, 2007.
  7. Степанец И., Фокин Г. Особенности реализации Massive MIMO в сетях 5G.// Первая миля. Last mile (Приложение к журналу «Электроника: наука, технология, бизнес»). — № 1. — 2018. — C. 46—52.

За что вы полюбите MU-MIMO

Определившись с тем, что это за технология MIMO, рекомендуется изучить функции, из-за которых вы полюбите новую ветвь развития беспроводной сети:

  1. Вся мощь и пропускная способность технологии направлена на DownStream. То есть высокая скорость обеспечена при потреблении трафика клиентскими устройствами. Без задержек можно смотреть фильмы 4K, онлайн трансляции, с комфортом играть в онлайн игры.
  2. Новый диапазон незабитый множественными Wi-Fi сетями в 5 ГГц. Именно в этом диапазоне по новой технологии взаимодействует роутер второго поколения с устройствами. Естественно, клиентские устройства тоже должны поддерживать работу в 5 ГГц. С каждым годом их становится все больше.
  3. Технология формирования сигнала, позаимствованная из военных наработок конца 80-х годов, позволяет посылать мощные сигналы в сторону предполагаемого места положения клиентского девайса. Мощный, сфокусированный сигнал увеличивает дальность стабильного соединения и скорость Wi-Fi-подключения.
  4. Обслуживание нескольких устройств одновременно возможно исходя из количества направленных потоков. Например, один направленный поток может обслуживать 1 устройство, второй поток – 2 устройства, третий и 4 поток объединился для обслуживания одного девайса. При этом для последнего увеличится скорость.
  5. Девайсы с поддержкой Вай Фай 5 ГГц не нуждаются в нескольких антеннах, для нормального приема сигнала от MU-MIMO. Однако если гаджет имеет 2 и более антенны, то может принять несколько потоков от Wi-Fi роутера, повысив при этом пропускную способность образовавшегося канала.

Заключение

Что такое технология MIMO? Это технология, расширяющая пропускную способность канала. Технология прошла заметную стадию развития и эволюционировала в MU-MIMO, которая вобрала в себя наработки военных радаров для улучшения и усиления сигналов, вкупе с увеличением пропускной способности для одновременного подключения нескольких клиентских устройств.

Многолучевое распространение – проблема или преимущество?

Для борьбы с многолучевым распространением сигналов применяется несколько различных решений. Одной из наиболее распространенных технологий является Receive Diversity – разнесенный прием . Суть его заключается в том, что для приема сигнала используется не одна, а сразу несколько антенн (обычно две, реже четыре), расположенные на расстоянии друг от друга. Таким образом, получатель имеет не одну, а сразу две копии переданного сигнала, пришедшего различными путями. Это дает возможность собрать больше энергии исходного сигнала, т.к. волны, принятые одной антенной, могут не быть принятыми другой и наоборот. Также сигналы, приходящие в противофазе к одной антенне, могут приходить к другой синфазно. Эту схему организации радио интерфейса можно назвать Single Input Multiple Output (SIMO), в противовес стандартной схеме Single Input Single Output (SISO). Также может быть применен обратный подход: когда используется несколько антенн на передачу и одна на прием. Благодаря этому также увеличивается общая энергия исходного сигнала, полученная приемником. Эта схема называется Multiple Input Single Output (MISO). В обеих схемах (SIMO и MISO) несколько антенн устанавливаются на стороне базовой станции, т.к. реализовать разнесение антенн в мобильном устройстве на достаточно большое расстояние сложно без увеличения габаритов самого оконечного оборудования.

В результате дальнейших рассуждений мы приходим к схеме Multiple Input Multiple Output (MIMO). В этом случае устанавливаются несколько антенн на передачу и прием. Однако в отличие от указанных выше схем эта схема разнесения позволяет не только бороться с многолучевым распространением сигнала, но и получить некоторые дополнительные преимущества. За счет использования нескольких антенн на передаче и приеме каждой паре передающей/приемной антенне можно сопоставить отдельный тракт для передачи информации. При этом разнесенный прием будет выполняться оставшимися антеннами, а данная антенна также будет выполнять функции дополнительной антенны для других трактов передачи. В результате, теоретически, можно увеличить скорость передачи данных во столько раз, сколько дополнительных антенн будет использоваться. Однако существенное ограничение накладывается качеством каждого радио тракта.

Принцип работы MIMO

Как уже отмечалось выше, для организации технологии MIMO необходима установка нескольких антенн на передающей и на приемной стороне. Обычно устанавливается равное число антенн на входе и выходе системы, т.к. в этом случае достигается максимальная скорость передачи данных. Чтобы показать число антенн на приеме и передаче вместе с названием технологии «MIMO» обычно упоминается обозначение «AxB», где A – число антенн на входе системы, а B – на выходе. Под системой в данном случае понимается радио соединение.

Для работы технологии MIMO необходимы некоторые изменения в структуре передатчика по сравнению с обычными системами. Рассмотрим лишь один из возможных, наиболее простых, способов организации технологии MIMO. В первую очередь, на передающей стороне необходим делитель потоков, который будет разделять данные, предназначенные для передачи на несколько низкоскоростных подпотоков, число которых зависит от числа антенн. Например, для MIMO 4х4 и скорости поступления входных данных 200 Мбит/сек делитель будет создавать 4 потока по 50 Мбит/сек каждый. Далее каждый их данных потоков должен быть передан через свою антенну. Обычно, антенны на передаче устанавливаются с некоторым пространственным разнесением, чтобы обеспечить как можно большее число побочных сигналов, которые возникают в результате переотражений. В одном из возможных способов организации технологии MIMO сигнал передается от каждой антенны с различной поляризацией, что позволяет идентифицировать его при приеме. Однако в простейшем случае каждый из передаваемых сигналов оказывается промаркированным самой средой передачи (задержкой во времени, затуханием и другими искажениями).

На приемной стороне несколько антенн принимают сигнал из радиоэфира. Причем антенны на приемной стороне также устанавливаются с некоторым пространственным разнесением, за счет чего обеспечивается разнесенный прием, обсуждавшийся ранее. Принятые сигналы поступают на приемники, число которых соответствует числу антенн и трактов передачи. Причем на каждый из приемников поступают сигналы от всех антенн системы. Каждый из таких сумматоров выделяет из общего потока энергию сигнала только того тракта, за который он отвечает. Делает он это либо по какому-либо заранее предусмотренному признаку, которым был снабжен каждый из сигналов, либо благодаря анализу задержки, затухания, сдвига фазы, т.е. набору искажений или «отпечатку» среды распространения. В зависимости от принципа работы системы (Bell Laboratories Layered Space-Time — BLAST, Selective Per Antenna Rate Control (SPARC) и т.д.), передаваемый сигнал может повторяться через определенное время, либо передаваться с небольшой задержкой через другие антенны.

В системе с технологией MIMO может возникнуть необычное явление, которое заключается в том, что скорость передачи данных в системе MIMO может снизиться в случае появления прямой видимости между источником и приемником сигнала. Это обусловлено в первую очередь уменьшением выраженности искажений окружающего пространства, который маркирует каждый из сигналов. В результате на приемной стороне становится проблематичным разделить сигналы, и они начинают оказывать влияние друг на друга. Таким образом, чем выше качество радио соединения, тем меньше преимуществ можно получить от MIMO.

Massive MIMO

Мassive MIMO — это технология, в которой количество пользовательских терминалов намного меньше, чем количество антенн базовой станции (мобильной станции).

Особенностью Massive MIMO является использование многоэлементных цифровых антенных решеток, с количеством антенных элементов 128, 256 и более. В целях упрощения аппаратной реализации и снижения стоимости таких многоканальных цифровых антенных решёток использование в них многомодовых оптоволоконных интерфейсов как разновидности радиофотоники является единственным разумным выбором не только при работе на прием сигналов, но и для передачи данных.

Снижению стоимости систем Massive MIMO в пересчете на один канал способствует применение комбинированных методов децимации отсчетов АЦП, сочетающих снижение темпа поступления данных с их предварительной (anti aliasing) фильтрацией, смещением по частоте и квадратурной (I/Q) демодуляцией. Кроме того, упрощение обработки сигналов может достигаться адаптивным изменением количества каналов в системе Massive MIMO сообразно помеховой ситуации в эфире. Для этого следует использовать динамическую кластеризацию отдельных групп антенных элементов цифровой антенной решётки в подрешётки.

Схемотехническая база систем Massive MIMO базируется на использовании модулей обработки сигналов стандартов CompactPCI, PCI Express, OpenVPX и др. Технология Massive MIMO является одной из ключевых для реализации систем сотовой связи 5G и будет совершенствоваться по мере перехода к системам связи 6G.

Больше MIMO — лучше сигнал

Проведенные испытания показали, что переход от MIMO 2 × 2 к MIMO 4 × 4 также может повысить уровень беспроводного сигнала. Компания Cellular Insights провела несколько тестов, сравнивая iPhone XR с iPhone XS. IPhone XR и iPhone XS имеют одинаковый беспроводной модем, поэтому основным отличием должно быть просто меньшее количество антенн на iPhone XR по сравнению с iPhone XS — MIMO 2 × 2 на XR против 4 × 4 на XS.

Когда оба телефона были подключены к сети MIMO LTE 4 × 4, iPhone XS 4 × 4 достиг максимума со скоростью загрузки чуть менее 400 Мбит/с. MIMO iPhone XR 2 × 2 достиг уровня 200 Мбит/с при той же мощности сигнала.

Это ожидаемо и демонстрирует преимущества MIMO 4 × 4 по сравнению с MIMO 2 × 2 — он может передавать данные в два раза быстрее.

Однако тесты также показали, что уровень сигнала iPhone XS выше, чем у iPhone XR в сети MIMO 4 × 4. Что еще более удивительно, iPhone XS имел лучшую мощность сигнала, чем iPhone XR, даже когда он был подключен к сотовой сети, которая поддерживала только MIMO2 × 2.

Это не имеет значения, если у Вас надежное соединение, и скорость загрузки устройства достаточен для Вас. Но когда у Вас слабый сотовый сигнал, похоже, что дополнительные антенны в MIMO 4 × 4 могут привести к улучшению беспроводного сигнала. MIMO 4 × 4 — это не только скорость — он также улучшает Ваш уровень сигнала.

Особенности распространения радиоволн

Для того чтобы понять принципы действия технологии MIMO необходимо рассмотреть общие принципы распространения радио волн в пространстве. Волны, излучаемые различными системами беспроводной радиосвязи в диапазоне свыше 100 МГц, во многом ведут себя как световые лучи. Когда радиоволны при распространении встречают какую-либо поверхность, то в зависимости от материала и размера препятствия часть энергии поглощается, часть проходит насквозь, а оставшаяся – отражается. На соотношение долей поглощенной, отраженной и прошедшей насквозь частей энергий влияет множество внешних факторов, в том числе и частота сигнала. Причем отраженная и прошедшая насквозь энергии сигнала могут изменить направление своего дальнейшего распространения, а сам сигнал разбивается на несколько волн.

Распространяющийся по вышеуказанным законам сигнал от источника к получателю после встречи с многочисленным препятствиями разбивается на множество волн, лишь часть из которых достигнет приемник. Каждая из дошедших до приемника волн образует так называемый путь распространения сигнала. Причем из-за того, что разные волны отражаются от разного числа препятствий и проходят разное расстояние, различные пути имеют разные временные задержки .

В условиях плотной городской постройки, из-за большого числа препятствий, таких как здания, деревья, автомобили и др., очень часто возникает ситуация когда между абонентским оборудованием (MS) и антеннами базовой станции (BTS) отсутствует прямая видимость. В этом случае, единственным вариантом достижения сигнала приемника являются отраженные волны. Однако, как отмечалось выше, многократно отраженный сигнал уже не обладает исходной энергией и может прийти с запозданием. Особую сложность также создает тот факт, что объекты не всегда остаются неподвижными и обстановка может значительно измениться с течением времени. В связи с этим возникает проблема многолучевого распространения сигнала – одна из наиболее существенных проблем в беспроводных системах связи.

О чем вообще идет речь?

Начнем с того, что в природе существуют, так называемые, мультипликативные помехи, влияющие на принимаемую мощность сигнала — замирания (fading).

Замирания бывают быстрыми и медленными (fast and slow fading).

Рис. 1. Колебания мощности сигнала в беспроводных каналах в зависимости от расстояния. Средний уровень потерь распространения монотонно увеличивается с увеличением дальности. Локальные отклонения могут возникать из-за макроскопических (медленных) и микроскопических (быстрых) замираний .

Сознаюсь сразу, сегодня с медленными замираниями мы работать не будем, а вот про быстрые поговорим достаточно подробно.

Быстрые замирания

Быстрые замирания возникают, как правило, по двум основным причинам:

  • из-за уже упомянутого нами многолучевого распространения (multipath propagation) и/или
  • из-за Допплеровских сдвигов частоты.

Но и это ещё далеко не всё.

Selective fading vs. Flat fading

Выше мы разделили наши помехи по характеру возникновения. Однако, помехи можно разделить ещё и по характеру воздействия на передаваемый сигнал. И здесь нам понадобится понятие избирательности канала.

Приведем небольшую классификацию по . Итак, быстрые замирания могут быть:

  1. Избирательными (selective)
    а. Частотно избирательными (frequency selective)
    б. Избирательными во временной области (time selective)
    в. Пространственно избирательными (это относится к вопросу об углах прихода и отправки ЭМ волн — сегодня мы этот вопрос разбирать не будем)
  2. Плоскими (flat) — тяготеющими больше к характеру медленных замираний (да, вот такой вот парадокс)

Что подразумевает последний термин, объясним от обратного.

Обратите внимание на переменную Delay spread — разброс задержек. Именно этот разброс в задержках между приходом разных копий одного сигнала и измеряют, когда определяют характеристики того или иного реального канала

Рис. 5. Типичный профиль задержки (мощности) — средняя мощность как функция задержки .

Рис. 7. Иллюстрация времени когерентности

Обратите внимание, здесь максимальная допплеровская частота отражает движение самого мобильного терминала

Ну, и соответственно, если нам удастся каким-то чудом избежать вышеперечисленного, то мы придем к самомому простому и удобному случаю — к плоским замираниям .

мимо (наречие)[править]

ми́-мо

Наречие, определительное, качественное; неизменяемое.

Корень: -мимо- [].

Корень: -ми-; суффикс: -мо [].

мимо → мима

Семантические свойстваправить

Значениеправить

  1. минуя, не останавливаясь, не задерживаясь (о движении вблизи кого-либо, чего-либо) ◆ Он, поровнявшись, поглядел, // Наташа поглядела, // Он вихрем мимо пролетел. А. С. Пушкин, «Жених», 1825 г. (цитата из Национального корпуса русского языка, см. ) ◆ И, едва махнув рукой, // Дед проходит мимо. А. Т. Твардовский, «Еще про Данилу», 1938 г. (цитата из Национального корпуса русского языка, см. ) ◆ Он решил в дом не заходить, а только пройти мимо, быть может заглянуть в сад, постоять в старой беседке. К. Г. Паустовский, «Снег», 1943 г. (цитата из Национального корпуса русского языка, см. )
  2. не затрагивая, не попадая в цель ◆ Он решил стрелять наугад, но, выпалив несколько раз из своей двустволки, понял, что стреляет мимо: после его выстрелов ни одной птицы на снегу не оставалось. Г. М. Марков, «Строговы. Кн. 1», 1936–1948 г. (цитата из Национального корпуса русского языка, см. )

Гипонимыправить

Родственные словаправить

Ближайшее родство
  • прилагательные: мимоезжий
  • наречия: мимоездом, мимоходом
Список всех слов с корнем «-ми-»
  • существительные: минование, неминуемость, разминовка
  • прилагательные: неминуемый, неминучий
  • глаголы: миновать, миноваться, минуть, минуться; преминуть, проминовать, проминуть, разминуться
  • причастия: минувший
  • наречия: неминуемо, мимо, помимо

Этимологияправить

Происходит от праслав. , от кот. в числе прочего произошли: др.-русск., ст.-слав. мимо, русск., укр., болг. мимо, сербохорв. ми̏мо, словенск. mȋmo «кроме», чешск., словацк. mimo, польск. mimо «несмотря, вопреки». Образовано с суф. -mо- от миновать, минуть, польск. mijać, mijam «проходить», чешск. míjeti, míjím «проходить, избегать». Родственно лат. meāre «ходить, проходить, идти». Использованы данные словаря М. Фасмера. См. Список литературы.

Переводправить

минуя, не останавливаясь, не задерживаясь
  • en: past, by
  • be: міма
  • es: al paso, sin detenerse; de paso
  • de: vorbei
  • uk:
  • hr: mimo
  • sv: förbi
не затрагивая, не попадая в цель
  • be: міма
  • uk:
  • sv: förbi, bredvid, vid sidan av; bom, miss

Применение MIMO

Технология MIMO в последнее десятилетие является одним из самых актуальных способов увеличения пропускной способности и емкости беспроводных систем связи. Рассмотрим некоторые примеры использования MIMO в различных системах связи.

Стандарт WiFi 802.11n – один из наиболее ярких примеров использования технологии MIMO. Согласно ему он позволяет поддерживать скорость до 300 Мбит/сек. Причем предыдущий стандарт 802.11g позволял предоставлять лишь 50 Мбит/сек. Кроме увеличения скорости передачи данных, новый стандарт благодаря MIMO также позволяет обеспечить лучшие характеристики качества обслуживания в местах с низким уровнем сигнала. 802.11n используется не только в системах точка/многоточка (Point/Multipoint) – наиболее привычной нише использования технологии WiFi для организации LAN (Local Area Network), но и для организации соединений типа точка/точка которые используются для организации магистральных каналов связи со скоростью несколько сотен Мбит/сек и позволяющих передавать данные на десятки километров (до 50 км).

Стандарт WiMAX также имеет два релиза, которые раскрывают новые возможности перед пользователями с помощью технологии MIMO. Первый – 802.16e – предоставляет услуги мобильного широкополосного доступа. Он позволяет передавать информацию со скоростью до 40 Мбит/сек в направлении от базовой станции к абонентскому оборудованию. Однако MIMO в 802.16e рассматривается как опция и используется в простейшей конфигурации – 2х2. В следующем релизе 802.16m MIMO рассматривается как обязательная технология, с возможной конфигурацией 4х4. В данном случае WiMAX уже можно отнести к сотовым системам связи, а именно четвертому их поколению (за счет высокой скорости передачи данных), т.к. обладает рядом присущих сотовым сетям признаков: роуминг , хэндовер , голосовые соединения. В случае мобильного использования, теоретически, может быть достигнута скорость 100 Мбит/сек. В фиксированном исполнении скорость может достигать 1 Гбит/сек.

Наибольший интерес представляет использование технологии MIMO в системах сотовой связи. Данная технология находит свое применение, начиная с третьего поколения систем сотовой связи. Например, в стандартеUMTS , в Rel. 6 она используется совместно с технологией HSPA с поддержкой скоростей до 20 Мбит/сек, а в Rel. 7 – с HSPA+, где скорости передачи данных достигают 40 Мбит/сек. Однако в системах 3G MIMO так и не нашла широкого применения.

Системы , а именно LTE, также предусматривают использование MIMO в конфигурации до 8х8. Это в теории может дать возможность передавать данные от базовой станции к абоненту свыше 300 Мбит/сек. Также важным положительным моментом является устойчивое качество соединения даже на краю соты . При этом даже на значительном удалении от базовой станции, или при нахождении в глухом помещении будет наблюдаться лишь незначительное снижение скорости передачи данных.

Таким образом, технология MIMO находит применение практически во всех системах беспроводной передачи данных. Причем потенциал ее не исчерпан. Уже сейчас разрабатываются новые варианты конфигурации антенн, вплоть до 64х64 MIMO. Это в будущем позволит добиться еще больших скоростей передачи данных, емкости сети и спектральной эффективности.

Что такое 5G?

Новое поколение беспроводной связи в РФ появится, но не скоро

Аббревиатура 5G – это сокращение IT-термина «fifth generation», что переводится как пятое поколение мобильных сетей. Эта технология работает на основе 4G/IMT-Advanced — телекоммуникационных стандартов сетей нового поколения.

В отличие от предыдущей категории связи, 5G обеспечивает повышенную пропускную способность, делает более доступным широкополосный мобильный интернет и позволяет использовать режим прямого соединения абонентов между собой. Масштабы коммуникации имеют надежное соединение с маленькой задержкой, что позволяет при меньших затратах энергии устройств получить скорость до 1-2 Гбит/с.
Разница между тремя поколениями связи в скорости

Поколение 5G обеспечит интернет соединение с пиковой передачей данных на скорости до 100 Мбит/с, что выше, чем у предыдущих 3G и 4G. Одна точка подключения сможет передавать данные на скорости до 1 Гбит/с, при этом качество сигнала будет в разы выше. Пятое поколение получило улучшенную зону покрытия, снижение задержек и эффективное распределение диапазонов.

Технические характеристики, отличия от 4G

Благодаря тому, что приемопередатчики будут оснащены большим количеством антенн и изменением конфигурации 4×4 на новую 128×128, сеть пятого поколения пропорциональным образом станет лучше по техническим характеристикам. Новые технологии «Massive MIMO» позволят увеличить показатели скорости и повысить качество сигнала, благодаря разнесенному приему. Но самым главным отличием будут новые частоты, которые подразделены по трем диапазонам:

  • Широкое покрытие на большие расстояния и площади – частоты до 3 ГГц;
  • Для крупных городов, качество и большое покрытие – 3-6 ГГц;
  • Миллиметровый диапазон, для точечного покрытия и повышенного качества– 24 ГГц.

В 4G используются диапазоны 720-750 МГц, а у 3G – 450 МГц. Такая значительная разница рабочих частот позволила повысить основные технические характеристики и использовать новые технологии. Благодаря увеличению диапазона, сети пятого поколения смогут разгоняться до 10 Гбит/с, в то время как у 4G это значение 15 Мбит/с, а у 3G – 6 Мбит/с.

Также, в отличие от сетей четвертого поколения, у 5G реализована технология Device-to-device (D2D), которая позволяет устройствам обмениваться данными между собой напрямую, если они рядом.
5G – технология будущего, и ее применение повсеместно будет не скоро

Еще одна технология, реализованная в новых сетях, – Network Slicing. Это инновационное построение сетей путем их нарезки на логически изолированные сегменты, которые можно настраивать индивидуально. Путем нарезки распределяются ресурсы под определенные задачи и выделяются объемы под важные задачи. Таким образом можно установить конфигурацию, которая обеспечит высокую скорость для определенного сегмента, а остальным будет предоставлять доступный ее объем.

IoT дружит с MU-MIMO?

Да. Роутер с беспроводным Wi-Fi с внедренной технологией позволит подключать и взаимодействовать с множеством IoT-устройствами одновременно. В свою очередь, это помогает избежать задержек, когда устройствам нужно быстро «пообщаться» между собой. Такими устройствами могут выступать:

  1. Компьютеризированная техника (ноутбуки, смартфоны, планшеты).
  2. Бытовая техника (кондиционеры, мультиварки, холодильники).
  3. Системы автоматизации.

Поддержка последних достижений в технологии MIMO есть не во всех устройствах прошлых лет. Но это не значит, что новые роутеры не смогут с ними взаимодействовать. Смогут, но только с использованием стандартных вариаций подключения Wi-Fi в другой частотном диапазоне.

Что делает MU-MIMO

MU-MIMO, многопользовательский MIMO или многопользовательский множественный входной множественный выход — это возможность передавать нескольким клиентам одновременно, а не только одну, или передавать данные сетевому клиенту с использованием нескольких потоков данных одновременно и, таким образом, увеличивать скорость передачи. С помощью этого способа передачи беспроводной маршрутизатор может «разговаривать» с несколькими пользователями одновременно на одном беспроводном радиоканале или с одним пользователем, используя несколько потоков данных на одном канале.

Существуют различные типы реализаций MU-MIMO, которые можно найти в беспроводных маршрутизаторах и устройствах:

  • 2×2 MIMO — он предлагает два пространственных потока беспроводной передачи и приема данных на одном канале или частоте. Для этой реализации вам нужны только две антенны, и вы можете одновременно подключить максимум два клиента, по одному на каждый поток.
  • 3×3 MIMO — он предлагает три пространственных потока, и вам нужны три антенны. Вы можете одновременно подключить максимум три клиента.
  • 4×4 MIMO — он предлагает четыре пространственных потока, вам нужны четыре антенны, и вы можете подключить максимум четыре клиента.
  • 8×8 MIMO — предлагает восемь пространственных потоков на одном и том же беспроводном канале или одну и ту же частоту максимум до четырех клиентов (да, это правильно). Для этой реализации вам понадобится восемь антенн. 8×8 MIMO еще не является основной технологией.

На рисунке ниже вы можете увидеть представление маршрутизатора с поддержкой 3×3 MIMO, сообщающегося одновременно с тремя устройствами.

Рейтинг автора
5
Материал подготовил
Максим Иванов
Наш эксперт
Написано статей
129
Ссылка на основную публикацию
Похожие публикации